Points and Vectors Lecture 15

Robb T. Koether

Hampden-Sydney College

Mon, Sep 30, 2019

Robb T. Koether (Hampden-Sydney College)

Points and Vectors

Mon, Sep 30, 2019 1 / 37

э

DQC

Outline

3

- 2 The Projective Plane
 - Points and Vectors
 - Vector Operations
 - Magnitude
 - Dot Product
 - Cross Product
- 5 The vec3 Class

6 Assignment

< 一型

프 🖌 🖌 프

Outline

- 2) The Projective Plane
- 3 Points and Vectors
- 4 Vector Operations
 - Magnitude
 - Dot Product
 - Cross Product
- 5 The vec3 Class

Assignment

∃ → < ∃ →</p>

I > <
 I >
 I

 The 3-dimensional point (x, y, z) may be written in 4D homogeneous coordinates as (X, Y, Z, W), where

$$x = X/W,$$

 $y = Y/W,$
 $z = Z/W.$

Thus, the points (1,2,3,1), (2,4,6,2), and (-5,-10,-15,-5) all represent the same 3D point (1,2,3).

∃ ► < ∃ ►</p>

- Homogeneous coordinates are used in projective geometry to carry out projections.
- They are used in compute graphics for the same reason.
- At one stage in the processing of a vertex, *x*, *y*, and *z* are divided by *w*.
- This is called the homogeneous divide and it occurs late in the processing, when the 3D scene is projected onto a 2D plane.

∃ ► < ∃ ►</p>

Outline

Homogeneous Coordinates

- 2 The Projective Plane
 - 3 Points and Vectors
- 4 Vector Operations
 - Magnitude
 - Dot Product
 - Cross Product
- 5 The vec3 Class

Assignment

∃ ► < ∃ >

Image: A matrix

- The half-sphere is a good model of the projective plane.
- Polar-opposite points on the sphere are considered to be the same point.
- Thus, only half of the sphere is needed for the model (or we work with equivalence classes of antipodal points).
- "Lines" in the model are great circles (equators) on the sphere.

E

DQC

<ロト < 回ト < 回ト < 回ト < 回ト -

臣

590

< ロ > < 回 > < 回 > < 回 > < 回 >

590

2

590

< ロ > < 回 > < 回 > < 回 > < 回 >

590

590

ヘロト 人間 ト 人目 ト 人目 ト

590

- 2

590

< ロ > < 回 > < 回 > < 回 > < 回 >

- The Z-axis is called the line at infinity.
- Parallel lines in the affine plane are great circles that meet on the *Z*-axis in the half-plane model.
- In that sense, parallel lines *literally* meet at infinity.

★ ∃ > < ∃ >

- For example, consider the parallel lines y = 1 and y = 2.
- In homogeneous coordinates, the equations are Y = Z and Y = 2Z.
- The solution is Y = Z = 0 and X can have any value (so it might as well be 1).
- Thus, the point of intersection is (1,0,0), which is the point at infinity on the *X*-axis.

- Where do the two branches of the parabola $y = x^2$ meet the line at infinity?
- The equation $(x \frac{1}{2})^2 + y^2 = (\frac{1}{2})^2$ represents a circle of radius $\frac{1}{2}$ with center at $(\frac{1}{2}, 0)$. Make the *y*-axis the line at infinity and find the equation of this circle.
- For the same circle, make the *x*-axis the line at infinity and find the equation of this parabola.

Outline

3

Homogeneous Coordinates

2 The Projective Plane

Points and Vectors

4 Vector Operations

- Magnitude
- Dot Product
- Cross Product

5 The vec3 Class

6 Assignment

프 > - 프 >

I > <
 I >
 I

- Points and vectors both may be created as vec3 objects.
- However, as vec4 objects, which they eventually will be,
 - For points, $w \neq 0$ (usually w = 1).
 - For vectors, w = 0.

• In a projective sense, a vector is a "point at infinity."

ヨトィヨト

• Let *P* and *Q* be points, **u** and **v** be vectors, and *c* be a scalar.

- $\mathbf{u} + \mathbf{v}$ is a vector.
- **u v** is a vector.
- P Q is a vector.
- $P + \mathbf{v}$ and $\mathbf{v} + P$ are a points.
- *P* **v** is a point.
- cv is a vector.

3

∃ ► < ∃ ►</p>

В

Point subtraction

Robb T. Koether (Hampden-Sydney College)

Points and Vectors

Mon, Sep 30, 2019 15 / 37

æ

DQC

Point subtraction

Robb T. Koether (Hampden-Sydney College)

Points and Vectors

3

DQC

Vector addition

æ

590

1

590

Scalar multiplication

Robb T. Koether (Hampden-Sydney College)

Points and Vectors

Mon, Sep 30, 2019 15 / 37

æ

DQC

Scalar multiplication

1

590

Scalar multiplication

э

DQC

æ

DQC

Robb T. Koether (Hampden-Sydney College)

Points and Vectors

Mon, Sep 30, 2019 15 / 37

æ

DQC

Robb T. Koether (Hampden-Sydney College)

Points and Vectors

æ

590

E ► < E ►

I > <
 I >
 I

æ

DQC

문 ▶ ★ 문 ▶

I > <
 I >
 I

Point-vector addition

3

DQC

Point-vector addition

Points and Vectors

3

DQC

Point-vector subtraction

Robb T. Koether (Hampden-Sydney College)

Points and Vectors

Mon, Sep 30, 2019 15 / 37

э

Point-vector subtraction

э

590

Point-vector subtraction

э

- What about...
 - **v** *P*?
 - *P* + *Q*?
 - cP?

э

DQC

- What about...
 - v P?
 - *P* + *Q*?
 - cP?
- Hint: Consider the homogeneous coordinate.

3

- Let *P*, *Q*, and *R* be points and **u**, **v**, and **w** be vectors.
- Which of the following statements are true?

•
$$P - (Q - R) = (P - Q) + R = R - (Q - P)$$

• $P - (Q - \mathbf{v}) = (P - Q) + \mathbf{v}$
• $P - (Q + \mathbf{v}) = (P - Q) - \mathbf{v}$
• $P + (Q - \mathbf{v}) = (P + Q) - \mathbf{v}$
• $P + (\mathbf{u} + \mathbf{v}) = (P + \mathbf{u}) + \mathbf{v}$
• $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$

12 N A 12

Outline

- Homogeneous Coordinates

Vector Operations

- Magnitude
- Cross Product

Assignment

프 🖌 🖌 프

< 17 ▶

Outline

- Homogeneous Coordinates
- 2 The Projective Plane
- 3 Points and Vectors
- Vector Operations
 Magnitude
 - Dot Product
 - Cross Product
- 5 The vec3 Class

Assignment

프 🖌 🖌 프

< A.

Definition (The Dot Product)

The magnitude of a vector is its length. It is given by the distance formula.

- Let $\mathbf{v} = (v_1, v_2, v_3)$.
- The magnitude of \mathbf{v} , denoted $|\mathbf{v}|$, is given by

$$|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

A B F A B F

- To normalize a vector, we divide it by its length.
- That is, for any vector v ≠ 0, the unit vector n with the same direction as v is

$$\mathbf{n} = \frac{\mathbf{v}}{|\mathbf{v}|}.$$

3

∃ ► < ∃ ►</p>

Outline

- Homogeneous Coordinates
- 2 The Projective Plane
- 3 Points and Vectors
- Vector Operations
 Magnitude
 - Dot Product
 - Cross Product
- 5 The vec3 Class

Assignment

프 🖌 🖌 프

< A.

Definition (The Dot Product)

The dot product of two vectors $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ is defined to be

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

• Note that the dot product of two vectors is a scalar.

∃ ► < ∃ ►</p>

- Let u, v, and w be vectors and let c be a real number and let θ be the angle between u and v.
- Then

 $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$ $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ $\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2$ $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$

- A consequence of the last property is that
 - $\mathbf{u} \cdot \mathbf{v} > 0$ if and only if $0^{\circ} \le \theta < 90^{\circ}$ (acute angle).
 - $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$ if and only if $\theta = \mathbf{90}^{\circ}$ (right angle).
 - $\mathbf{u} \cdot \mathbf{v} < 0$ if and only if $90^{\circ} < \theta \le 180^{\circ}$ (obtuse angle).
- This is of *enormous* importance in computer graphics.

A B F A B F

Definition (Orthogonal Projection)

The orthogonal projection of a vector \mathbf{u} onto a vector \mathbf{v} is the vector

$$\left(rac{\mathbf{u}\cdot\mathbf{v}}{\mathbf{v}\cdot\mathbf{v}}
ight)\mathbf{v}.$$

• For example, the projection of $\mathbf{u} = (5, 0, 2)$ onto $\mathbf{v} = (3, 4, 5)$ is

$$\begin{pmatrix} \mathbf{u} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} \end{pmatrix} \mathbf{v} = \begin{pmatrix} \frac{5 \cdot 3 + 0 \cdot 4 + 2 \cdot 5}{3 \cdot 3 + 4 \cdot 4 + 5 \cdot 5} \end{pmatrix} (3, 4, 5)$$
$$= \begin{pmatrix} \frac{25}{50} \end{pmatrix} (3, 4, 5)$$
$$= \begin{pmatrix} \frac{3}{2}, \frac{4}{2}, \frac{5}{2} \end{pmatrix}.$$

Outline

- Homogeneous Coordinates
- 2 The Projective Plane
- 3 Points and Vectors
- 4
 - Vector Operations
 - Magnitude
 - Dot Product
 - Cross Product

5 The vec3 Class

6 Assignment

프 🖌 🖌 프

< 17 ▶

Definition (Cross Product)

The cross product of vectors $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ is defined to be the vector

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1).$$

- To find normal vectors, we need the cross product.
- Note that the cross product of vectors is a vector, not a scalar.

∃ ► < ∃ ►</p>

<i>u</i> ₁	<i>u</i> ₂	<i>u</i> ₃
<i>v</i> ₁	<i>v</i> ₂	<i>v</i> ₃

An easy way to remember the cross product.

э

DQC

<i>u</i> ₁	<i>u</i> ₂	<i>u</i> ₃	<i>u</i> ₁	<i>u</i> ₂
<i>v</i> ₁	v_2	<i>v</i> ₃	<i>v</i> ₁	<i>v</i> ₂

Duplicate the first and second columns.

э

Find this 2×2 determinant for the first component.

э

DQC

Find the next 2×2 determinant for the second component.

э

DQC

Find the last 2×2 determinant for the third component.

э

DQC

 Let u, v, and w be vectors and let c be a real number and let θ be the angle between u and v.

$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$
$$(c\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (c\mathbf{v}) = c(\mathbf{u} \times \mathbf{v})$$
$$\mathbf{v} \times \mathbf{v} = \mathbf{0}$$
$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = \mathbf{0}$$
$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$$

- The right-hand rule helps us remember which way $\mathbf{u} \times \mathbf{v}$ points.
- Arrange the thumb, index finger, and middle finger so that they are mutually orthogonal.
- Let the thumb represent \mathbf{u} and the index finger represent \mathbf{v} .
- Then the middle finger represents $\mathbf{u} \times \mathbf{v}$.

∃ ► < ∃ ►</p>

Example (Finding Surface Normals)

Given a triangle *ABC*, where A = (1, 1, 2), B = (3, 1, 5), and C = (1, 0, 4), find a unit vector **N** that is normal to the surface.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Example (Finding Surface Normals)

Let

$$u = B - A = (2, 0, 3)$$

 $v = C - A = (0, -1, 2)$

$$N = rac{n}{|n|} = \left(rac{3}{\sqrt{29}}, -rac{4}{\sqrt{29}}, -rac{2}{\sqrt{29}}
ight)$$

Robb T. Koether (Hampden-Sydney College)

2

590

<ロト < 回 ト < 回 ト < 回 ト < 回 ト ...</p>

Outline

- Homogeneous Coordinates
- 2 The Projective Plane
- 3 Points and Vectors
- 4 Vector Operations
 - Magnitude
 - Dot Product
 - Cross Product

5 The vec3 Class

6 Assignment

프 🖌 🖌 프

Vector Functions

```
float length(vecn v);
float dot(vecn u, vecn v);
vec3 cross(vec3 u, vec3 v);
```

- In the vec classes (vec2, vec3, vec4), there are member functions for the length and the dot product.
- The cross product applies to vec3 objects only.

A B M A B M

Outline

- Homogeneous Coordinates
- 2 The Projective Plane
- 3 Points and Vectors
- Vector Operations
 - Magnitude
 - Dot Product
 - Cross Product
- 5 The vec3 Class

6 Assignment

프 🖌 🖌 프

Image: A matrix

Assignment

• Read pp. 207 - 210, Homogeneous Coordinates.

Robb T. Koether (Hampden-Sydney College)

э

Sac